L’incompletezza Gödeliana, che göduria!


Nell’articolo precedente ho esposto alcune limitazioni della logica, strumento principe utilizzato dalla mente occidentale per effettuare ogni tipo di valutazione; voglio adesso giocare il carico da dieci.

Non intendo tediarti con pesanti disquisizioni matematiche, impresa che peraltro non sarei in grado di portare avanti in modo rigoroso, quindi rimarrò sul piano metaforico: supponiamo che tu sia invitato ad una festa organizzata da un amico, il quale ti ha informato che saranno presenti sei uomini e quattro donne, tu e lui compresi.

Da questa informazione iniziale puoi dedurne altre:

  • in totale sarete in dieci
  • i maschi saranno meno delle femmine
  • non è vero che le femmine saranno più dei maschi
  • non sarà possibile effettuare balli di coppia senza lasciar fuori qualche maschio
  • ecc.

Ovviamente le deduzioni hanno valore fintanto che la proposizione iniziale rimane vera: assumendo che il tuo amico sia affidabile, ti senti di poter mettere tranquillamente la mano sul fuoco circa la validità delle tue deduzioni: è un po’ come se tutte quelle informazioni fossero già implicitamente presenti nella prima.

Ebbene, tutta la matematica ragiona così: esistono poche informazioni iniziali, assunte per vere data la loro ovvietà (ma già qui si potrebbe discutere), e a partire da queste si costruisce l’enorme impianto teorico che poi ci viene freddamente propinato sui banchi di scuola.

Si parte dunque da un limitato insieme di enunciati (“saranno presenti sei uomini e quattro donne”), su questi si applicano delle regole per derivarne altri (“i maschi saranno meno delle femmine”), e poi si usano gli strumenti della logica per capire se sono veri o falsi.

Detto in altri termini, a partire da un insieme di affermazioni iniziali (e una serie di regole combinatorie) puoi derivarne un insieme più grande; tutte saranno valide dal punto di vista lessicale, ma solo alcune saranno vere (ad esempio, “le femmine saranno più dei maschi” è valida dal punto di vista lessicale, ma non vera in base all’assunto di partenza).

I matematici fino ai primi del novecento avevano un obiettivo ambizioso e, visto col senno di poi, presuntuoso: fissare un numero di affermazioni iniziali ritenute vere senza bisogno di dimostrazione perché ovvie (assiomi) e su queste costruire tutto l’impianto teorico della matematica; il capofila di questa missione era il tedesco David Hilbert.

Ma ecco improvvisa la doccia fredda, come un fulmine a ciel sereno; nel 1929 un altro matematico tedesco (Kurt Gödel, il mio mito) se ne esce fuori col suo teorema di incompletezza che sancisce in modo definitivo: non è proprio il caso di sbattersi ulteriormente nell’impresa, perché è logicamente impossibile!

Curioso vero? I limiti della logica dimostrati usando la logica stessa.

Insomma, Gödel dimostra che non è possibile, nemmeno in linea di principio, stabilire un elenco di affermazioni iniziali dalle quali poi si possano dedurre la verità o falsità di tutte le altre: esisterà sempre un’affermazione che sappiamo essere vera ma senza poterlo dimostrare!

Come facciamo allora a sapere che è vera? Perché usiamo informazioni aggiuntive che non appartengono all’elenco di partenza, e quindi “vediamo” cose che il sistema di affermazioni e deduzioni non “vede”; noi osserviamo la questione “dal di fuori”: ecco i vantaggi dell’essere distaccati.

Beh, dirai, ma allora è semplice: basta aggiungere questa affermazione mancante all’elenco, ed ecco che tutto va a posto…

Eh no, controbatte l’amico Kurt: è sempre possibile trovare un’altra affermazione, sintatticamente valida, di cui non si riesce a dimostrare la verità restando entro i limiti del sistema di assiomi, ma che noi sappiamo essere vera.

Non so se mi hai seguito fino in fondo, ma la portata di tutto questo è eccezionale!

Intanto dimostra che la nostra intelligenza va oltre la logica, perché riesce a vedere realtà non raggiungibili da una fredda sequenza di deduzioni; in secondo luogo ci tranquillizza su catastrofici scenari futuri nei quali i computer prendono il sopravvento: finché si baseranno su ferree procedure booleane rimarranno dei meri, stupidi servitori.

Ma soprattutto evidenzia che l’essere umano è dotato di un dono, la creatività, che va oltre ogni logica (per l’appunto!).

Ciò che più mi fa riflettere su tutto questo è il modo in cui Gödel è riuscito a dimostrare il suo teorema; non ho le conoscenze né le capacità per spiegartelo in modo rigoroso, ma ha a che fare con l’autoreferenzialità: è riuscito a trovare, usando le regole del sistema, un’affermazione che parla di sé stessa (alla guisa della famosa citazione di Parmenide “questa frase è falsa”).

Questa situazione circolare ha mandato in tilt il sistema dimostrandone la debolezza, un po’ come un programma per computer che entra in loop bloccandosi; eppure, per arrivare a dimostrare questo, noi esseri umani siamo in qualche modo in grado di aggirare queste limitazioni… e mi piace pensare che è proprio in questa sorta di capacità di essere autoreferenziali che risiede la nostra potenza!

L’auto coscienza, l’auto osservazione, la consapevolezza di sé è lo strumento per mandare in tilt gli auto… matismi (!) e prendere finalmente il controllo della nostra vita, affrancandoci dalla schiavitù dei programmi mentali che ci hanno installato nel tempo attraverso l’educazione.

Temi forse che questo ti possa condurre alla pazzia? Il rischio è concreto, finché rimani aggrappato alle certezze della logica…

Un pensiero su “L’incompletezza Gödeliana, che göduria!

  1. Pingback: L’esame imprevisto | Fuori dal solco

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo di WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google photo

Stai commentando usando il tuo account Google. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...